

Ce document a été mis en ligne par l'organisme FormaV®

Toute reproduction, représentation ou diffusion, même partielle, sans autorisation préalable, est strictement interdite.

BREVET DE TECHNICIEN SUPÉRIEUR

AGENCEMENT DE L'ENVIRONNEMENT ARCHITECTURAL

SESSION 2015

U32 - SCIENCES PHYSIQUES

Durée: 2 heures - Coefficient: 2

SUJET

Dès que le sujet vous est remis, assurez-vous qu'il soit complet. Le sujet est composé de 6 pages numérotées de 1/6 à 6/6.

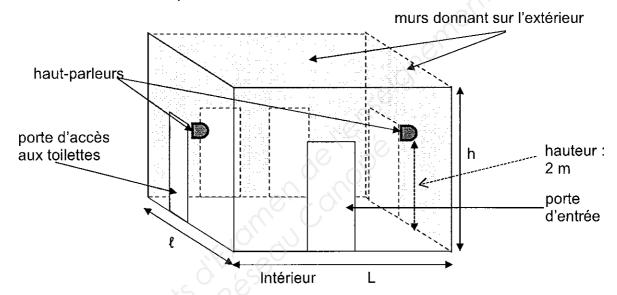
Les annexes 1 et 2 page 6/6 sont à rendre avec la copie. L'annexe 3 de cette page peut être une aide au calcul pour le candidat.

Matériel autorisé

Une calculatrice de poche à fonctionnement autonome, sans imprimante et sans moyen de transmission, à l'exclusion de tout autre élément matériel ou documentaire. (Circulaire n°99-186 du 16 novembre 1999 ; BOEN n°42).

La clarté des raisonnements et la qualité de la rédaction interviendront dans l'appréciation des copies.

CODE ÉPREUVE : 1506ADE3SC	EXAMEN : BREVET DE TECHNICIEN SUPÉRIEUR	SPÉCIALITÉ : AGENCEMENT DE L'ENVIRONNEMEI ARCHITECTURAL	
SESSION : 2015	SUJET	ÉPREUVE : U32 - SCIENCES PHYSIQUES	
Durée : 2 h	Coefficient : 2	SUJET N°10ED13	Page : 1/6


La salle de réunion dans un atelier de menuiserie est rectangulaire, de largeur $\ell = 10$ m, de longueur L = 15 m et de hauteur h = 3 m. Elle est située dans un angle du bâtiment : un grand côté avec deux baies vitrées et un petit côté qui comporte une baie vitrée, grisés sur le schéma ci-dessous, donnent sur l'extérieur. Les dimensions de ces trois baies vitrées, identiques, sont les suivantes :

largeur :
$$\ell_v = 2.0 \text{ m}$$
; hauteur : $h_v = 1.8 \text{ m}$.

Les dimensions de la porte d'entrée et de la porte qui permet d'accéder aux toilettes, toutes les deux vitrées, sont les suivantes :

- porte d'entrée : largeur : ℓ_p = 1,6 m ; hauteur : h_p = 2,05 m
- porte d'accès aux toilettes : largeur : l_t = 0,8 m ; hauteur : h_t = 2,05 m.

Le sol est recouvert d'un plancher en bois.

Elle est équipée d'un système de ventilation, d'un système de climatisation réversible et est sonorisée par deux haut-parleurs (voir figure ci-dessus) positionnés sur deux murs opposés, au milieu du panneau, et à deux mètres de hauteur. L'éclairage est assuré par des spots de type halogène, non représentés sur la figure ci-dessus.

Les parties A. B. C et D sont totalement indépendantes.

Partie A: Étude thermique du local [8,5 points].

La valeur du coefficient de transmission thermique global des baies vitrées, U_V , est égale à 3,00 W.m⁻².K⁻¹. Le coefficient de conductivité thermique λ_b des murs extérieurs en béton d'épaisseur e_b = 180 mm vaut 1,4 W.m⁻¹.K⁻¹. Ces murs sont recouverts d'un enduit de finition d'épaisseur e_e = 15 mm dont le coefficient de conductivité thermique λ_e vaut 0,5 W.m⁻¹.K⁻¹. On néglige les transferts de chaleur par le sol, le plafond et les murs intérieurs.

La température à l'intérieur du local est θ_i = 20 °C, celle à l'extérieur est θ_e = 28 °C. Le tableau suivant précise les valeurs normalisées des résistances thermiques superficielles utiles :

EXAMEN: BTS A.E.A. - Épreuve: U32 - SCIENCES PHYSIQUES - Sujet N°10ED13 - Page 2/6

Résistance thermique superficielle	R _{si}	R _{se}	R _{si} + R _{se}
	m².K.W ⁻¹	m².K.W ⁻¹	m ² .K.W ⁻¹
Paroi verticale Flux horizontal	1,30.10 ⁻¹	4,0.10 ⁻²	1,70.10 ⁻¹

- A.1.1. Exprimer la résistance thermique surfacique R_{ME} des murs extérieurs en fonction des épaisseurs des matériaux, de leur coefficient de conductivité thermique tout en tenant compte des résistances surfaciques superficielles.
- A.1.2. Calculer R_{ME} puis en déduire que la valeur du coefficient de transmission thermique global du mur, U_{ME} , est : $U_{ME} = 3.04 \text{ W.m}^{-2} \cdot \text{K}^{-1}$.
- A.2. Compléter le tableau page 6/6 annexe 1 (à rendre avec la copie) pour calculer la valeur du flux thermique Φ_p à travers les deux parois donnant sur l'extérieur.
- A.3. Dans quel sens le flux thermique circule-t-il ? Faut-il chauffer ou refroidir le local ?
- A.4. Dans ce local, l'éclairage est assuré par 24 spots dissipant chacun 50 W sous forme d'énergie thermique. Calculer la valeur du flux thermique $\Phi_{\rm e}$ apporté par l'éclairage.
- A.5. Le système de ventilation renouvelle l'air de la pièce en une heure.

La capacité thermique massique de l'air est : c_a = 1000 J.kg⁻¹.K⁻¹.

La masse volumique de l'air est : $\rho_a = 1,3 \text{ kg.m}^{-3}$.

- 5.1. Montrer que l'énergie thermique apportée par la ventilation en une heure est $Q_v = 4,68 \text{ MJ}$.
- 5.2. En déduire la valeur du flux thermique Φ_v dû au système de ventilation.
- A.6. L'éclairage fonctionne en plus de la ventilation.
 - 6.1. Montrer que la valeur du flux thermique Φ_t reçu par cette salle est Φ_t = 4,32 kW
 - 6.2. Donner, en valeur absolue, la valeur de la puissance thermique à installer pour maintenir le local à 20℃. Cette puissance est -elle positive ou négative ?

Partie B: Acoustique architecturale [6,25 points].

- B.1. Qu'est-ce que le phénomène de réverbération ? À quoi est-il dû ?
- B.2. Donner la définition de la durée de réverbération T₀ qui s'exprime par la formule suivante en fonction des caractéristiques de la salle :

$$T_o = \frac{0.16 \times V}{A}$$

B.3. Le tableau ci-dessous précise la valeur des coefficients d'absorption des matériaux à la fréquence de 1kHz :

Nature des matériaux	Coefficient d'absorption		
Bois	0,07		
Enduit de finition sur béton (murs, plafond)	0,03		
Vitrages (baies vitrées et portes)	0,12		

Compléter le tableau de l'annexe 2 page 6/6 (à rendre avec la copie), et calculer l'aire d'absorption A_1 du local vide.

- B.4. Calculer la durée de réverbération T₀₁ du local vide et commenter ce résultat.
- B.5. Cette salle est équipée d'un mobilier dont la surface équivalente d'absorption totale est $A_m = 22,5 \text{ m}^2$.
 - 5.1. On veut que la durée de réverbération soit inférieure à 0,9 seconde quand la salle (avec son mobilier) est inoccupée. La surface du plafond est alors recouverte avec des dalles caractérisées par leur coefficient d'absorption α_D .

Vérifier que si la valeur de α_D est de 0,3, cette contrainte est respectée. Vous pouvez utiliser le tableau de l'annexe 3, page 6/6, pour organiser vos calculs.

5.2. Cinquante personnes sont présentes dans la salle. En admettant que la surface d'absorption équivalente d'une personne est $A_{ep} = 1 \text{ m}^2$, calculer la nouvelle aire d'absorption A_3 du local et calculer la nouvelle durée de réverbération T_{03} . Cette durée est-elle satisfaisante ?

Partie C: Acoustique énergétique [2,75 points].

Les questions 4 et 5 sont indépendantes des précédentes ainsi qu'entre elles.

Pour sonoriser ce local on place un haut-parleur sur chaque petit côté, à 2,0 m de hauteur (voir figure au début de l'énoncé). On admet que chaque haut-parleur émet des ondes dans un demi-espace. Le niveau de puissance acoustique de chaque haut-parleur est $L_w = 82 \text{ dB}$.

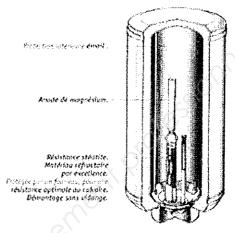
On rappelle que : $P_0 = 10^{-12} \text{ W}$ et $I_0 = 10^{-12} \text{ W} \cdot \text{m}^{-2}$.

On rappelle l'expression de la surface d'une sphère de rayon R : $S = 4 \cdot \pi \cdot R^2$

- C.1. Montrer que la puissance acoustique P d'un seul haut-parleur est $P = 1,58.10^{-4} \,\mathrm{W}$.
- C.2. Un seul haut-parleur, placé au milieu d'un petit côté, placé à 2,0 m de hauteur, fonctionne (voir la figure page 2/6). Calculer l'intensité acoustique I_A en A situé au centre du local à 2,0 m du sol. En déduire le niveau sonore L_A correspondant.
- C.3. Quand les 2 haut-parleurs fonctionnent simultanément, calculer l'intensité I'_A et le niveau L'_A en A.
- C.4. Quel doit être le niveau de conversation L_C de deux personnes situées en A pour qu'elles ne soient pas dérangées quand les 2 haut-parleurs fonctionnent en admettant que le niveau sonore L'_A dû aux 2 haut-parleurs est égal à 60 dB ? Commenter la valeur obtenue.

On rappelle que dès que la différence entre deux niveaux sonores de deux sons reçus est supérieure à huit décibels, seul le son le plus fort est perçu.

EXAMEN: BTS A.E.A. - Épreuve: U32 - SCIENCES PHYSIQUES - Sujet N°10ED13 - Page 4/6


Partie D : Étude du chauffe-eau de ce local [2,5 points]. La question 5 est indépendante des précédentes.

Dans les toilettes de ce local, il y a un cumulus électrique. Il est constitué d'une cuve en acier (l'acier se comporte comme son principal constituant : le fer).

Données:

$$E_0(Fe^{2+}/Fe) = -0.44 \text{ V}$$
 $E_0(Mg^{2+}/Mg) = -2.36 \text{ V}$

D.1. Il est protégé de la corrosion par une électrode de magnésium qui joue le rôle d'anode sacrificielle. Préciser le phénomène électrique se produisant à l'anode en écrivant la demi-équation associée au magnésium.

- D.2. Écrire la demi-équation associée au métal de la cuve,
- D.3. En déduire l'équation globale de la réaction chimique susceptible d'apparaître lors de l'utilisation du cumulus.
- D.4. En admettant que la température soit égale à 25 ℃ et que les concentrations ioniques soient normales, exprimer puis calculer la tension de la pile ainsi formée entre la cuve et le magnésium.

EXAMEN: BTS A.E.A. - Épreuve: U32 - SCIENCES PHYSIQUES - Sujet N°10ED13 - Page 5/6

Annexe à rendre avec la copie

Annexe 1 - Partie A, question 2 : Calcul du flux thermique

Dans les colonnes où l'unité n'est pas précisée, il s'agit de l'unité du Système International.

	S (m²)	U	$\theta_{\mathrm{e}}\left(\mathcal{C}\right)$	$\theta_{i}(\mathcal{C})$	$\Phi_{p}(W)$
Murs extérieurs					
Ouvertures					
TOTAL					7,4

Annexe 2 - Partie B, question 3 : calcul de l'aire d'absorption équivalente A₁ du local vide.

	Coefficient d'absorption	()	Aire d'absorption équivalente (m²)
Plancher			
Murs et plafond		0,06	
Portes et baies vitrées	Ce/l	- OX	
•	Ctoll do	A ₁ =	

Annexe 3 - Partie B, question 5.1:

Matériau	Coefficient d'absorption	······································	Aire d'absorption équivalente (m²)
96			
· 0/0,			
dillo			
-			
		A ₃ =	